skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kreidberg, Laura"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rocky planets are common around other stars, but their atmospheric properties remain largely unconstrained. Thanks to a wealth of recent planet discoveries and upcoming advances in observing capability, we are poised to characterize the atmospheres of dozens of rocky exoplanets in this decade. The theoretical understanding of rocky exoplanet atmospheres has advanced considerably in the last few years, yielding testable predictions of their evolution, chemistry, dynamics, and even possible biosignatures. We review key progress in this field to date and discuss future objectives. Our major conclusions are as follows: ▪ Many rocky planets may form with initial H 2 –He envelopes that are later lost to space, likely due to a combination of stellar UV/X-ray irradiation and internal heating. ▪ After the early stages of evolution, a wide diversity of atmospheric compositions is expected as a result of variations in host star flux, atmospheric escape rates, interior exchange, and other factors. ▪ Observations have ruled out both the presence of H 2 -dominated atmospheres on several nearby rocky exoplanets and the presence of any thick atmosphere on one target. A more detailed atmospheric characterization of these planets and others will become possible in the near future. ▪ Exoplanet biosphere searches are an exciting future goal. However, reliable detections for a representative sample of planets will require further advances in observing capability and improvements in our understanding of abiotic planetary processes. 
    more » « less
  2. Abstract We resolve the multiple images of the binary-lens microlensing event ASASSN-22av using the GRAVITY instrument of the Very Large Telescope Interferometer (VLTI). The light curves show weak binary-lens perturbations, complicating the analysis, but the joint modeling with the VLTI data breaks several degeneracies, arriving at a strongly favored solution. Thanks to precise measurements of the angular Einstein radiusθE= 0.724 ± 0.002 mas and microlens parallax, we determine that the lens system consists of two M dwarfs with masses ofM1= 0.258 ± 0.008MandM2= 0.130 ± 0.007M, a projected separation ofr= 6.83 ± 0.31 au, and a distance ofDL= 2.29 ± 0.08 kpc. The successful VLTI observations of ASASSN-22av open up a new path for studying intermediate-separation (i.e., a few astronomical units) stellar-mass binaries, including those containing dark compact objects such as neutron stars and stellar-mass black holes. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract Young terrestrial worlds are critical test beds to constrain prevailing theories of planetary formation and evolution. We present the discovery of HD 63433 d—a nearby (22 pc), Earth-sized planet transiting a young Sun-like star (TOI-1726, HD 63433). HD 63433 d is the third planet detected in this multiplanet system. The kinematic, rotational, and abundance properties of the host star indicate that it belongs to the young (414 ± 23 Myr) Ursa Major moving group, whose membership we update using new data from the third data release of the Gaia mission and TESS. Our transit analysis of the TESS light curves indicates that HD 63433 d has a radius of 1.1Rand closely orbits its host star with a period of 4.2 days. To date, HD 63433 d is the smallest confirmed exoplanet with an age less than 500 Myr, and the nearest young Earth-sized planet. Furthermore, the apparent brightness of the stellar host (V≃ 6.9 mag) makes this transiting multiplanet system favorable to further investigations, including spectroscopic follow-up to probe the atmospheric loss in a young Earth-sized world. 
    more » « less
  4. Abstract The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1–3suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2under thermochemical equilibrium compared with that produced from the photochemistry of H2O and H2S (1–10 ppm)4–9. However, the SO2inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 μm and, therefore, the detection of other SO2absorption bands at different wavelengths is needed to better constrain the SO2abundance. Here we report the detection of SO2spectral features at 7.7 and 8.5 μm in the 5–12-μm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10. Our observations suggest an abundance of SO2of 0.5–25 ppm (1σrange), consistent with previous findings4. As well as SO2, we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 μm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1–8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range. 
    more » « less
  5. Abstract Close-in giant exoplanets with temperatures greater than 2,000 K (‘ultra-hot Jupiters’) have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope1–3. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis3–12. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS13instrument on the JWST. The data span 0.85 to 2.85 μm in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >6σconfidence) and evidence for optical opacity, possibly attributable to H, TiO and VO (combined significance of 3.8σ). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy-element abundance (‘metallicity’,$${\rm{M/H}}=1.0{3}_{-0.51}^{+1.11}$$ M/H = 1.0 3 0.51 + 1.11 times solar) and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the substellar point that decreases steeply and symmetrically with longitude towards the terminators. 
    more » « less
  6. Abstract Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2in such an atmosphere is through photochemical processes5,6. Here we show that the SO2distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7with NIRSpec PRISM (2.7σ)8and G395H (4.5σ)9. SO2is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations. 
    more » « less
  7. Abstract The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy1–4. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality5–9. Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6–2.8 μm in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement (‘metallicity’) of about 10–30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet’s terminator. 
    more » « less
  8. Abstract Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems1,2. Access to the chemical inventory of an exoplanet requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based3–5and high-resolution ground-based6–8facilities. Here we report the medium-resolution (R ≈ 600) transmission spectrum of an exoplanet atmosphere between 3 and 5 μm covering several absorption features for the Saturn-mass exoplanet WASP-39b (ref. 9), obtained with the Near Infrared Spectrograph (NIRSpec) G395H grating of JWST. Our observations achieve 1.46 times photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2(28.5σ) and H2O (21.5σ), and identify SO2as the source of absorption at 4.1 μm (4.8σ). Best-fit atmospheric models range between 3 and 10 times solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2, underscore the importance of characterizing the chemistry in exoplanet atmospheres and showcase NIRSpec G395H as an excellent mode for time-series observations over this critical wavelength range10
    more » « less